Домой / Дача / Как хромосомы участвуют в развитии зародыша. Развитие зародыша. Структурные хромосомные аномалии

Как хромосомы участвуют в развитии зародыша. Развитие зародыша. Структурные хромосомные аномалии

Вопрос 1.
Зигота (от греч. «зиготос» - соединенный вместе) - оплодотворенное яйцо. Диплоидная клетка, образовавшаяся в результате слияния гамет (сперматозоида и яйцеклетки), - это начальная одноклеточная стадия развития зародыша.
Зигота - одноклеточная стадия развития нового организма.

Вопрос 2.
В процессе дробления клетки делятся путем митоза. Митотическое деление при дроблении значительно отличается от размножения клеток взрослого организма: митотический цикл очень короткий, клетки не дифференцируются - в них не используется наследственная информация. Кроме этого, при дроблении цитоплазма клеток не перемешивается и не перемещается; отсутствует рост клеток.

Вопрос 3 .
Дробление – это митотическое деление зиготы. Между делениями интерфаза отсутствует, а удвоение ДНК начинается в телофазу предыдущего деления. Не происходит также и рост зародыша, то есть объем зародыша не изменяется и величиной равен зиготе. Клетки, образовавшиеся в процессе дробления, называются бластомерами, а зародыш – бластулой. Характер дробления обусловлен типом яйцеклетки (рис. 2.).
Наиболее простой и филогенетически самый древний тип дробления - полное равномерное дробление изолецитальных яиц. Бластула, образующаяся в результате полного дробления, называется целобластулой. Это однослойная бластула с полостью в центре.
Бластула, образующаяся в результате полного, но неравномерного дробления, имеет многослойную бластодерму с полостью ближе к анимальному полюсу и называется амфибластулой.
Неполное дискоидальное дробление заканчивается образованием бластулы, в которой бластомеры расположены только на анимальном полюсе, в то время как вегетативный полюс состоит из нерасчлененной желточной массы. Под слоем бластодермы в виде щели расположена бластоцель. Такой тип бластулы называется дискобластулой.
Особым типом дробления является неполное поверхностное дробление членистоногих. Их развитие начинается с многократного дробления ядра, расположенного в центре яйца среди желточной массы. Образовавшиеся при этом ядра перемещаются к периферии, где расположена бедная желтком цитоплазма. Последняя распадается на бластомеры, которые своим основанием переходят в неразделенную центральную массу. Дальнейшее дробление ведет к образованию бластулы с одним слоем бластомеров на поверхности и желтком внутри. Такая бластула называется перибластулой.
В яйцах млекопитающих мало желтка. Это алецитальные или олиголецитальные яйца по количеству желтка, а по распределению желтка по яйцеклетке - это гомолецитальные яйца. Дробление у них полное, но неравномерное, уже на ранних стадиях дробления наблюдается различие бластомеров по их величине и по окраске: светлые располагаются по периферии, темные в центре. Из светлых клеток образуется окружающий зародыш трофобласт, клетки которого выполняют вспомогательную функцию и непосредственно в формировании тела зародыша не участвуют. Клетки трофобласта растворяют ткани, благодаря чему зародыш внедряется в стенку матки. Далее клетки трофобласта отслаиваются от зародыша, образуя полый пузырек. Полость трофобласта заполняется жидкостью, диффундирующей в нее из тканей матки. Зародыш в это время имеет вид узелка, расположенного на внутренней стенке трофобласта. Бластула млекопитающих имеет небольшую центрально расположенную бластоцель и называется стерробластулой. В результате дальнейшего дробления зародыш имеет форму диска, распластанного на внутренней поверхности трофобласта.
Таким образом, дробление зародышей различных многоклеточных животных хотя и идет празному, но в конечном счёте заканчивается тем, что оплодотворенная яйцеклетка (одноклеточная стадия развития) в результате дробления превращается в многоклеточную бластулу. Наружный слой бластулы называется бластодермой, а внутренняя полость - бластоцелью или первичной полостью, где накапливаются продукты жизнедеятельности клеток.

Рис. 2.Типы яиц и соответствующие им типы дробления

Независимо от особенностей дробления оплодотворенных яйцеклеток у разных животных, обусловленных различиями в количестве и характере распределения желтка в цитоплазме, этому периоду эмбрионального развития свойственны следующие общие черты.
1. В результате дробления образуется многоклеточный зародыш - бластула и накапливается клеточный материал для дальнейшего развития.
2. Все клетки в бластуле имеют диплоидный набор хромосом, одинаковы по строению и отличаются друг от друга главным образом по количеству желтка, т. е. клетки бластулы не дифференцированы.
3. Характерная особенность дробления - очень короткий митотический цикл по сравнению с его продолжительностью у взрослых животных.
4. В период дробления интенсивно синтезируются ДНК и белки и отсутствует синтез РНК. Генетическая информация, содержащаяся в ядрах бластомеров, не используется.
5. Во время дробления цитоплазма не перемещается.
Вопрос 4.
Зародышевые листки - это отдельные пласты клеток, занимающие определенное положение в зародыше и дающие начало соответствующим тканям и органам. Они гомологичны у всех животных, т. е. вне зависимости от систематического положения животного дают развитие одним и тем же органам и тканям. Гомология зародышевых листков подавляющего большинства животных - одно из доказательств единства животного мира. Зародышевые листки образуются в результате Дифференциации сходных между собой сравнительно однородных клеток бластулы.

Вопрос 5.
Дифференцировка клеток – это процесс, в результате которого клетка становится специализированной, то есть приобретает химические, морфологические и функциональные особенности. Примером может служить дифференцировка клеток эпидермиса кожи человека, при которой в клетках, перемещающихся из базального в шиповатый и затем в другие, более поверхностные слои, происходит накопление кератогиалина, превращающегося в клетках блестящего слоя в элеидин, а затем в роговом слое – в кератин. При этом изменяется форма клеток, строение клеточных мембран и набор органоидов. Дифференцируется не одна клетка, а группа сходных клеток. В организме человека насчитывается около 100 различных типов клеток. Фибробласты синтезируют коллаген, миобласты – миозин, клетки эпителия пищеварительного тракта пепсин и трипсин и т.д.
Первые химические и морфологические различия между клетками обнаруживаются во время гаструляции. Процесс, в результате которого отдельные ткани в ходе дифференцировки приобретают характерный для них вид, называется гистогенезом. Дифференцировка клеток, гистогенез и органогенез совершаются в совокупности, причем в определенных участках зародыша и в определенное время. Это очень важно, потому что указывает на координированность и интегрированность эмбрионального развития. Возникает вопрос, каким образом клетки, обладающие одинаковым генотипом, дифференцируются и участвуют в гисто- и органогенезе в необходимых местах и в определенные сроки соответственно целостному “образу” данного вида организма. В настоящее время общепризнанной точкой зрения является точка зрения Т. Моргана, который опираясь на хромосомную теорию наследственности, предположил, что дифференцировка клеток в процессе онтогенеза является результатом последовательных реципрокных (взаимных) влияний цитоплазмы и меняющихся продуктов активности ядерных генов. Прозвучала идея о дифференциальной экспрессии генов как основного механизма цитодифференцировки.
В настоящее время собрано много доказательств того, что в большинстве случаев соматические клетки организмов несут полный диплоидный набор хромосом, а генетические потенции ядер соматических клеток также полностью сохраняются, т.е. гены не утрачивают потенциальной функциональной активности. Проведенные цитогенетическим методом исследования кариотипов различных соматических клеток показали почти полную их идентичность. Цитофотометрическим способом установлено, что количество ДНК в них не уменьшается, а методом молекулярной гибридизации показано, что клетки разных тканей идентичны по нуклеотидным последовательностям.
Наследственный материал соматических клеток способен сохраняться полноценным не только в количественном, но и в функциональном отношении. Следовательно, цитодифференцировка не является следствием недостаточности наследственного материала. Главная идея заключается в избирательной проявляемости генов в признак, т.е. в дифференциальной экспрессии генов.
Экспрессия гена в признак – сложный этапный процесс, который изучается в основном по продуктам активности гена, с помощью электронного микроскопа или по результатам развития особи.

Вопрос 6.
У разных видов животных одни и те же зародышевые листки дают одни и те же органы и ткани. Это значит, что зародышевые листки гомологичны. Гомология зародышевых листков подавляющего большинства животных - одно из доказательств единства животного мира.

Человек зарождается, когда сперматозоид — мужская половая клетка, попав в организм женщины, сливается с ее яйцеклеткой и образуется единая клетка. Новая клетка развивается путем деления. В какое-то время у зародыша появляются и потом исчезают признаки, присущие представителям животного мира: по образу и подобию рыб формируются жаберные дуги, челюстной сустав, который есть у пресмыкающихся, отрастают хвост и тонкий волосяной покров. Эти древнейшие формы существуют недолго и потом либо видоизменяются, либо исчезают.

Зародыш быстро проходит как бы все стадии эволюции . Этот процесс называется рекапитуляцией (повторением).

Немецкие биологи Фриц Мюллер и Эрнст Геккель сформулировали в XIX в. биогенетический закон: «Индивидуальное развитие каждой особи есть краткое и быстрое повторение исторического развития вида, к которому эта особь относится».

Развиваясь в материнской утробе, зародыш человека проходит всю эволюцию живого. У этого четырехнедельного эмбрионе (длина его — всего 4 мм) отчетливо видны жаберный аппарат, как у рыб, и хвост. Через несколько недель они исчезнут. Русский биолог А.Н. Северцов (1866 — 1936) установил, что в индивидуальном развитии повторяются признаки не взрослых предков, а их зародышей.

Ребенок развивается в материнской утробе примерно 266 дней, или 38 недель (первые восемь недель его называют эмбрионом, далее — плодом). В эмбриональный период из бесформенного скопления клеток постепенно формируется зародыш, в общих чертах уже напоминающий человека. К концу этих восьми недель заложены все основные внутренние и наружные органы человека. Правда, по внешнему виду эмбриона еще нельзя определить его пол — это удастся лишь по прошествии еще двух недель.

На девятой неделе начинается плодный, или фетальный, период — пора роста и созревания организма. С этого времени крохотный ребенок, лежащий в особой водной оболочке, начинает изгибаться, шевелить ручками и ножками. Кожа его, поначалу прозрачная, как стекло, мутнеет и утрачивает прозрачность. К концу четвертого месяца сердце малыша заметно крепнет. Каждый день оно перекачивает по его ковеносным сосудам более 30 л крови. Теперь плод достигает 16 см в длину и весит 170 г. На пятом месяце будущий ребенок уже весьма ощутимо толкается, болтает руками и ногами. Он уже чувствует движение и слышит. Громкие звуки заставляют его сердце биться быстрее. И вот еще что происходит в это время: на кончиках пальцев вырисовывается узор из тонких витых линий. Узор этот «пристает» к пальцам навсегда. Дотронувшись до любого предмета, человек оставляет на нем отпечатки своих пальцев. Они уникальны: на Земле не сыскать и двух человек с одинаковыми отпечатками пальцев.

К началу шестого месяца плод весит 600 г. Если ребенок появится на свет на шестом месяце беременности (то есть раньше срока), то — при хорошем уходе врачей — он выживет. А если все сложится нормально, он родится в конце девятого месяца. Такие новорожденные весят не меньше 3200 г, при росте в среднем 50 см.

Пол зародыша определяется при оплодотворении; однако структурная дифференцировка полов наступает лишь на седьмой неделе внутриутробного развития. Не исключено, что в течение некоторого времени половые железы обладают потенцией обоих полов. В какой-то момент наличие или отсутствие полноценной Υ-хромосомы имеет, по-видимому, критическое значение. В присутствии Υ-хромосомы половые железы развиваются в семенники. В противном случае образуются яичники. Возникнув в зародыше, семенники начинают выделять гормоны, действие которых вызывает развитие остальных признаков мужского пола. А. Джосту удалось выяснить, что признаки мужского пола развиваются в зародышах кроликов только после образования семенников. Для возникновения женских половых признаков яичники не требуются и могут даже совсем отсутствовать.

Создается впечатление, что функция половых хромосом человека сводится к тому, чтобы направить развитие зародыша по пути формирования либо женского, либо мужского организма. Дальнейшая дифференцировка происходит уже под влиянием гормонов. В случае неисправности направляющего механизма возникают нарушения в синтезе гормонов и аномалии в половых признаках развивающегося зародыша.

Обнаруженная зависимость между отклонениями в половом развитии и хромосомными аномалиями дает ключ к пониманию механизма определения пола. Многие отклонения появляются в результате случайных нарушений нормального хода образования яйцеклетки или сперматозоида, принимающих участие в создании нового организма. Как правило, две половые хромосомы каждой пары разделяются еще до возникновения зародышевой клетки. В огромном большинстве случаев подобное расхождение хромосом протекает беспрепятственно. Однако иногда хромосомы не расходятся. Возможно, что причиной синдромов Клайнфельтера и Тернера служит нерасхождение хромосом в зародышевых клетках одного из родителей (рис. 8 и 9). Если такое нерасхождение произошло в материнском организме, то может появиться женский организм с тремя Х-хромосомами (см. рис. 9). Теоретически возможно даже образование оплодотворенной яйцеклетки совсем без Х-хромосом, с одной только Υ-хромосомой, но такой случай ни разу не был обнаружен. Очевидно, для нормального функционирования клеток необходима хотя бы одна Х-хромосома, без которой зародыши погибают. Наконец, могут возникнуть яйцеклетка или сперматозоид, вовсе не содержащие половых хромосом, если во время клеточного деления Х- или Υ-хромосома двигалась слишком медленно и не успела попасть в одну из дочерних клеток. Подобная утрата хромосомы также может быть причиной синдрома Тернера.

Отклонения возникают не только во время образования зародышевых клеток, но и при развитии зародыша. На ранних стадиях развития зародышей их клетки активно делятся: каждая дочерняя клетка получает обычно одну половинку от каждой продольно удваивающейся хромосомы. Однако может случиться, что какая-нибудь клетка получит сразу обе половинки или, наоборот, не получит ни одной: такая клетка способна дать затем начало целой линии клеток, у которых эта хромосома будет представлена в избыточном или недостаточном числе. В развившемся из такого зародыша организме клетки будут иметь неоднородный хромосомный набор. Подобные «мозаичные» организмы действительно встречаются среди больных с нарушением половой функции. У некоторых больных с синдромом Клайнфельтера имеются клетки с хромосомным набором XX и ΧΧΥ, а у других — ΧΥ и ΧΧΥ. Аналогично одни женщины с синдромом Тёрнера содержат клетки XX и X, а другие XXX и X. Число возможных сочетаний велико, и исследователи находят все новые и новые комбинации.

Исследования половых различий у человека на уровне клетки быстро развиваются. Успехи, достигнутые столь недавно, уже приносят первые плоды в медицине, помогая установить физическую причину ряда заболеваний, остававшихся прежде необъяснимыми. Дальнейшие достижения прольют свет на природу самых незначительных отклонений от нормы. Следующим этапом будет излечивание или предотвращение подобных нарушений, что, несомненно, наступит, хотя и не завтра. Есть особая привлекательность в этих новых данных о взаимосвязи между клеточными структурами, которые видны под микроскопом, и особенностями двух полов, если, конечно, вы не согласны с Гамлетом, которого «не интересуют мужчины,— и женщины тоже».

TBegin-->
TEnd-->

Рис. 8. Нерасхождение, т. е. неспособность гомологичных хромосом разойтись в процессе клеточного деления, может служить причиной половых нарушений. На схеме изображены возможные последствия такого нерасхождения при образовании сперматозоидов: оплодотворенная яйцеклетка получит либо две Х-хромосомы и одну Υ-хромо- сому, либо только одну Х-хромосому. В обоих случаях возникнут известные проявления интерсексуальности.

TBegin-->
TEnd-->

Рис. 9. Нерасхождение хромосом материнского организма приведет к образованию яйцеклеток либо с двумя Х-хромосомами, либо совсем без них. В зависимости от того, какими сперматозоидами они будут оплодотворены, такие яйцеклетки способны дать начало организму с любым из четырех возможных хромосомных наборов.

Зародышевым (эмбриональным) развитием человека является ранний период развития до 8 недель. В течение этого времени из оплодотворенной яйцеклетки зарождается тело, которое обладает всеми основными признаками человека. После восьми недель развития внутриутробный организм называется плодом, а период развития плодным.

Эмбриональное развитие человека делится на несколько периодов. Рассмотрим этапы развития эмбриона человека. Первый период одноклеточного зародыша (зиготы, обладающей всеми свойствами обеих половых клеток) протекает с момента оплодотворения яйцеклетки, в которой находятся два ядра. Каждое ядро содержит половинный набор хромосом (23 хромосомы папы и 23 хромосомы мамы).

Человеческий эмбрион начинает медленно продвигаться по фаллопиевой трубе, подгоняемый бахромками трубы и током жидкости в ней. Главной целью его движения является матка.

Впервые деление одноклеточного эмбриона человека происходит через 30 часов после оплодотворения. Затем деление происходит по одному дроблению в сутки.

Через четверо суток эмбрион приобретает вид комочка, который состоит примерно из 8-12 клеток. Далее деление клеток человеческого зародыша будет происходить все быстрее и быстрее.

В этот период матка начинает подготавливаться к принятию зародыша. Слизистая оболочка матки утолщается и становится рыхлой. В ней начинает появляться множество дополнительных кровеносных сосудов.

Клетки эмбриона человека начинают выделять ферменты, которые разрушают слизистую оболочку матки. Специальные ворсинки на поверхности зародыша начинают быстро увеличиваться, прорастать в ткань матки. На имплантацию человеческого зародыша необходимо 40 часов. Появляется новый орган, называющийся плацента или детское место. Плацента - это орган, который связывает организм матери с зародышем, а также обеспечивает питание эмбриона.

К концу второй недели длина человеческого зародыша составляет 1,5 мм.

Развитие эмбриона человека происходит в соответствии с четко выстроенным планом.

На четвертой неделе развития начинают появляться зачатки большинства органов и тканей будущего человека (почки, кишечник, хрящи остевого скелета, кости, поперечнополосатая мускулатура, щитовидная железа, печень, кожные покровы, уши, глаза).

На пятой неделе длина человеческого зародыша составляет около 7,5 мм. На этом сроке при помощи (ультразвуковое исследование) можно увидеть сокращения сердца эмбриона.

В период 32 дней развития у эмбриона человека начинают появляться зачатки рук, ближе к 40 дню - зачатки ног.

В конце своего развития зародыш уже становится длиной около 3-4 см (от темени до копчика). В это время заканчивается закладка всех основных органов зародыша, он приобретает все признаки человека, как во внешнем облике, так и во внутренней организации.

Изучение развития человеческого организма от момента образования одноклеточной зиготы, или оплодотворенной яйцеклетки, до рождения ребенка. Эмбриональное (внутриутробное) развитие человека длится примерно 265–270 дней. В течение этого времени из исходной одной клетки образуется более 200 миллионов клеток, а размеры эмбриона увеличивается от микроскопического до полуметрового.
В целом развитие человеческого эмбриона можно разделить на три стадии. Первая – это период от оплодотворения яйцеклетки до конца второй недели внутриутробной жизни, когда развивающийся эмбрион (зародыш) внедряется в стенку матки и начинает получать питание от матери. Вторая стадия длится с третьей до конца восьмой недели. В течение этого времени формируются все основные органы и эмбрион приобретает черты человеческого организма. По окончании второй стадии развития он уже называется плодом. Протяженность третьей стадии, называемой иногда фетальной (от лат. fetus – плод), – от третьего месяца до рождения. На этой заключительной стадии завершается специализация систем органов и плод постепенно приобретает способность существовать самостоятельно.

ПОЛОВЫЕ КЛЕТКИ И ОПЛОДОТВОРЕНИЕ

У человека зрелая половая клетка (гамета) – это сперматозоид у мужчины, яйцеклетка (яйцо) у женщины. Перед слиянием гамет с образованием зиготы эти половые клетки должны сформироваться, созреть и затем встретиться.

Половые клетки человека по структуре сходны с гаметами большинства животных. Принципиальное отличие гамет от остальных клеток организма, называемых соматическими, заключается в том, что гамета содержит только половину от числа хромосом соматической клетки. В половых клетках человека их 23. В процессе оплодотворения каждая половая клетка привносит в зиготу свои 23 хромосомы, и таким образом зигота имеет 46 хромосом, т. е. двойной их набор, как это присуще всем соматическим клеткам человека. См. также КЛЕТКА.

Будучи сходны по главным структурным признакам с соматическими клетками, сперматозоид и яйцеклетка в то же время высоко специализированы для своей роли в репродукции. Сперматозоид – небольшая и очень подвижная клетка (см. СПЕРМАТОЗОИД). Яйцеклетка, напротив, неподвижна и гораздо крупнее (почти в 100 000 раз), чем сперматозоид. Бóльшую часть ее объема составляет цитоплазма, содержащая запасы питательных веществ, необходимые эмбриону в начальный период развития (см. ЯЙЦО).

Для оплодотворения необходимо, чтобы яйцеклетка и сперматозоид достигли стадии зрелости. Более того, яйцеклетка должна быть оплодотворена в течение 12 часов после выхода из яичника, в противном случае она погибает. Человеческий сперматозоид живет дольше, около суток. Быстро двигаясь с помощью своего кнутообразного хвоста, сперматозоид достигает соединенного с маткой протока – маточной (фаллопиевой) трубы, куда попадает из яичника и яйцеклетка. Обычно это занимает менее часа после совокупления. Считается, что оплодотворение происходит в верхней трети маточной трубы.

Несмотря на то, что в норме эякулят содержит миллионы сперматозоидов, только один проникает в яйцеклетку, активируя цепочку процессов, приводящих к развитию эмбриона. В силу того, что сперматозоид весь целиком проникает в яйцеклетку, мужчина привносит потомку, помимо ядерного, и некоторое количество цитоплазматического материала, в том числе центросому – небольшую структуру, необходимую для клеточного деления зиготы. Сперматозоид определяет и пол потомка. Кульминацией оплодотворения считается момент слияния ядра сперматозоида с ядром яйцеклетки.

ДРОБЛЕНИЕ И ИМПЛАНТАЦИЯ

После оплодотворения зигота постепенно спускается по маточной трубе в полость матки. В этот период, в течение примерно трех дней, зигота проходит стадию клеточного деления, известную как дробление. При дроблении число клеток увеличивается, но общий их объем не меняется, так как каждая дочерняя клетка мельче, чем исходная. Первое дробление происходит примерно через 30 часов после оплодотворения и дает две совершенно одинаковые дочерние клетки. Второе дробление наступает через 10 часов после первого и приводит к образованию четырехклеточной стадии. Примерно через 50–60 часов после оплодотворения достигается стадия т. н. морулы – шара из 16 и более клеток.

По мере продолжения дробления наружные клетки морулы делятся быстрее, чем внутренние, в результате наружный клеточный слой (трофобласт) отделяется от внутреннего скопления клеток (т. н. внутренней клеточной массы), сохраняя с ними связь только в одном месте. Между слоями образуется полость, бластоцель, которая постепенно заполняется жидкостью. На этой стадии, наступающей через три–четыре дня после оплодотворения, дробление заканчивается и эмбрион называют бластоцистой, или бластулой. В течение первых дней развития, эмбрион получает питание и кислород из секрета (выделений) маточной трубы.

Примерно через пять–шесть дней после оплодотворения, когда бластула находится уже в матке, трофобласт образует пальцевидные ворсинки, которые, энергично двигаясь, начинают внедряться в ткань матки. В то же время, по-видимому, бластула стимулирует выработку ферментов, способствующих частичному перевариванию слизистой (эндометрия) матки. Примерно на 9–10 день эмбрион имплантируется (врастает) в стенку матки и оказывается полностью окруженным ее клетками; с имплантацией эмбриона прекращается менструальный цикл.

В дополнение к своей роли в имплантации, трофобласт участвует также в образовании хориона – первичной мембраны, окружающей эмбрион. В свою очередь хорион содействует образованию плаценты, губчатой по структуре мембраны, через которую эмбрион в дальнейшем получает питание и выводит продукты обмена.

ЭМБРИОНАЛЬНЫЕ ЗАРОДЫШЕВЫЕ ЛИСТКИ

Эмбрион развивается из внутренней клеточной массы бластулы. По мере увеличения давления жидкости внутри бластоцеля клетки внутренней клеточной массы, которая становится компактной, формируют зародышевый щиток, или бластодерму. Зародышевый щиток разделяется на два слоя. Один из них становится источником трех первичных зародышевых листков: эктодермы, энтодермы и мезодермы. Процесс обособления сначала двух, а затем и третьего зародышевого листка (т. н. гаструляция) знаменует превращение бластулы в гаструлу.

Зародышевые листки вначале различаются лишь по расположению: эктодерма – самый наружный слой, энтодерма – внутренний, а мезодерма – промежуточный. Формирование трех зародышевых листков завершается примерно через неделю после оплодотворения.

Постепенно, шаг за шагом, каждый зародышевый листок дает начало определенным тканям и органам. Так, эктодерма формирует наружный слой кожи и ее производные (придатки) – волосы, ногти, кожные железы, выстилку ротовой полости, носа и заднего прохода, – а также всю нервную систему и рецепторы органов чувств, например сетчатку глаза. Из энтодермы образуются: легкие; выстилка (слизистая оболочка) всего пищеварительного тракта, кроме рта и заднего прохода; некоторые примыкающие к этому тракту органы и железы, такие, как печень, поджелудочная железа, тимус, щитовидная и паращитовидные железы; выстилка мочевого пузыря и мочеиспускательного канала. Мезодерма – источник системы кровообращения, выделительной, половой, кроветворной и иммунной систем, а также мышечной ткани, всех типов опорно-трофических тканей (скелетной, хрящевой, рыхлой соединительной и т. д.) и внутренних слоев кожи (дермы). Полностью развившиеся органы обычно состоят из нескольких типов тканей и поэтому связаны своим происхождением с разными зародышевыми листками. По этой причине проследить участие того или иного зародышевого листка можно только в процессе формирования ткани.

ВНЕЗАРОДЫШЕВЫЕ ОБОЛОЧКИ

Развитие эмбриона сопровождается образованием нескольких оболочек, окружающих его и отторгаемых при рождении. Самая наружная из них – уже упоминавшийся хорион, производное трофобласта. Он соединен с эмбрионом с помощью телесного стебелька из соединительной ткани, происходящей из мезодермы. Со временем стебелек удлиняется и образует пупочный канатик (пуповину), соединяющий эмбрион с плацентой.

Плацента развивается как специализированный вырост плодных оболочек. Ворсинки хориона прободают эндотелий кровеносных сосудов слизистой оболочки матки и погружаются в кровяные лакуны, заполненные кровью матери. Таким образом, кровь плода отделена от крови матери лишь тонкой наружной оболочкой хориона и стенками капилляров самого зародыша, т. е. непосредственного смешения крови матери и плода не происходит. Через плаценту диффундируют питательные вещества, кислород и продукты обмена веществ. При рождении плацента отбрасывается как послед и ее функции переходят к пищеварительной системе, легким и почкам.

Внутри хориона зародыш помещается в мешке, называемом амнионом, который формируется из эмбриональной эктодермы и мезодермы. Амниотический мешок наполнен жидкостью, увлажняющей зародыш, защищающей его от толчков и удерживающей в состоянии, близком к невесомости.

Другая дополнительная оболочка – аллантоис, производное энтодермы и мезодермы. Это место хранения продуктов выделения; он соединяется с хорионом в телесном стебельке и способствует дыханию эмбриона.

У эмбриона существует еще одна временная структура – т. н. желточный мешок. В течении какого-то времени желточный мешок снабжает эмбрион питательными веществами путем диффузии из материнских тканей; позднее здесь формируются родоначальные (стволовые) клетки крови. Желточный мешок является первичным очагом кроветворения у эмбриона; впоследствии эта функция переходит сначала к печени, а затем к костному мозгу.

РАЗВИТИЕ ЭМБРИОНА

Во время образования внезародышевых оболочек органы и системы эмбриона продолжают развиваться. В определенные моменты одна часть клеток зародышевых листков начинает делиться быстрее, чем другая, группы клеток мигрируют, а клеточные слои изменяют свою пространственную конфигурацию и местоположение в эмбрионе. В отдельные периоды рост некоторых типов клеток очень активен и они увеличиваются в размерах, в то время как другие растут медленно или вовсе перестают расти.

Первой после имплантации развивается нервная система. В течение второй недели развития эктодермальные клетки задней стороны зародышевого щитка быстро увеличиваются в числе, вызывая формирование выпуклости над щитком – первичной полоски. Затем на ней образуется желобок, в передней части которого возникает небольшая ямка. Спереди от этой ямки клетки быстро делятся и образуют головной отросток, предшественник т. н. спинной струны, или хорды. По мере удлинения хорда образует у зародыша ось, обеспечивающую основу симметричной структуры человеческого тела. Выше хорды расположена нервная пластинка, из которой образуется центральная нервная система. Примерно на 18-й день мезодерма по краям хорды начинает формировать спинные сегменты (сомиты), парные образования, из которых развиваются глубокие слои кожи, скелетные мышцы и позвонки.

После трех недель развития средняя длина эмбриона лишь немного больше 2 мм от темени до хвоста. Тем не менее уже присутствуют зачатки хорды и нервной системы, а также глаз и ушей. Уже есть сердце S-образной формы, пульсирующее и прокачивающее кровь.

После четвертой недели длина эмбриона равна примерно 5 мм, тело имеет С-образную форму. Сердце, составляющее самую большую выпуклость на внутренней стороне изгиба тела, начинает подразделяться на камеры. Формируются три первичные области мозга (мозговые пузыри), а также зрительный, слуховой и обонятельный нервы. Образуется пищеварительная система, включая желудок, печень, поджелудочную железу и кишечник. Начинается структурирование спинного мозга, можно рассмотреть маленькие парные зачатки конечностей.

Четырехнедельный человеческий эмбрион уже имеет жаберные дуги, которые напоминают жаберные дуги зародыша рыбы. Они скоро исчезают, но их временное появление – один из примеров сходства строения человеческого зародыша с другими организмами (см. также ЭМБРИОЛОГИЯ).

В возрасте пяти недель у эмбриона есть хвост, а формирующиеся руки и ноги напоминают культи. Начинают развиваться мышцы и центры окостенения. Голова представляет собой самую крупную часть: головной мозг представлен уже пятью мозговыми пузырями (полостями с жидкостью); имеются также выпуклые глаза с хрусталиками и пигментированной сетчаткой.

В период от пятой до восьмой недели завершается собственно эмбриональный период внутриутробного развития. В течение этого времени эмбрион вырастает от 5 мм до примерно 30 мм и начинает напоминать человека. Его внешность изменяется следующим образом: 1) уменьшается изгиб спины, хвост становится менее заметным, частично из-за уменьшения, частично потому, что скрывается развивающимися ягодицами; 2) голова выпрямляется, на развивающемся лице появляются внешние части глаз, ушей и носа; 3) руки отличаются от ног, уже можно увидеть пальцы рук и ног; 4) пуповина вполне определена, площадь ее прикрепления на животе зародыша становится меньше; 5) в области живота сильно разрастается печень, становясь столь же выпуклой, как и сердце, и оба эти органа формируют бугристый профиль средней части тела вплоть до восьмой недели; в это же время в полости живота становится заметен кишечник, который делает живот более округлым; 6) шея становится более узнаваемой в основном за счет того, что сердце опускается ниже, а также из-за исчезновения жаберных дуг; 7) появляются наружные половые органы, хотя еще не полностью приобретшие окончательный вид.

К концу восьмой недели почти все внутренние органы хорошо сформированы, а нервы и мышцы настолько развиты, что эмбрион может производить спонтанные движения. С этого времени и до родов основные изменения плода связаны с ростом и дальнейшей специализацией.

ЗАВЕРШЕНИЕ РАЗВИТИЯ ПЛОДА

В течение последних семи месяцев развития вес плода увеличивается с 1 г до примерно 3,5 кг, а длина – с 30 мм до примерно 51 см. Величина ребенка на момент родов может значительно варьировать в зависимости от наследственности, питания и здоровья.

В ходе развития плода сильно изменяются не только его размеры и вес, но и пропорции тела. Например, у двухмесячного плода голова составляет почти половину длины тела. В оставшиеся месяцы она продолжает расти, но медленнее, так что к моменту рождения составляет только четверть длины тела. Шея и конечности становятся длиннее, при этом ноги растут быстрее, чем руки. Другие внешние изменения связаны с развитием наружных половых органов, ростом волос на теле и ногтей; кожа становится более гладкой из-за отложения подкожного жира.

Одно из наиболее значительных внутренних изменений связано с заменой хряща костными клетками в процессе становления зрелого скелета. Отростки многих нервных клеток покрываются миелином (белково-липидным комплексом). Процесс миелинизации вместе с формированием связей между нервами и мышцами приводит к увеличению подвижности плода в матке. Эти движения хорошо ощущаются матерью примерно после четвертого месяца. После шестого месяца плод поворачивается в матке таким образом, что его голова оказывается внизу и упирается в шейку матки.

К седьмому месяцу плод полностью покрывается первородной смазкой, белесоватой жирной массой, которая сходит после родов. Преждевременно родившемуся в этот период ребенок выжить труднее. Как правило, чем ближе роды к нормальному сроку, тем больше шансов у ребенка выжить, поскольку в последние недели беременности плод получает временную защиту от некоторых заболеваний за счет антител, поступающих из крови матери. Хотя роды отмечают конец внутриутробного периода, биологическое развитие человека продолжается в детском и подростковом периоде.

ПОВРЕЖДАЮЩИЕ ВОЗДЕЙСТВИЯ НА ПЛОД

Врожденные пороки могут быть следствием разнообразных причин, таких, как болезнь, генетические отклонения и многочисленные вредные вещества, влияющие на плод и организм матери. Дети с врожденными пороками могут на всю жизнь остаться инвалидами из-за физической или умственной неполноценности. Рост знаний об уязвимости плода, особенно в первые три месяца, когда формируются его органы, привел в настоящее время к повышенному вниманию к дородовому периоду.

Болезни. Одна из наиболее частых причин врожденных пороков –вирусное заболевание краснуха. Если мать заболевает краснухой в первые три месяца беременности, это может привести к непоправимым аномалиям развития плода. Маленьким детям иногда делают прививку против краснухи, чтобы уменьшить вероятность заболевания контактирующих с ними беременных женщин. См. также КРАСНУХА.

Потенциально опасны и венерические болезни. Сифилис может передаваться от матери плоду, следствием чего бывают выкидыши и рождение мертвого ребенка. Обнаруженный сифилис нужно незамедлительно лечить антибиотиками, что важно для здоровья матери и ее будущего ребенка.

Эритробластоз плода может стать причиной рождения мертвого ребенка либо тяжелой анемии новорожденного с развитием умственной отсталости. Заболевание возникает в случаях резус-несовместимости крови матери и плода (обычно при повторной беременности резус-положительным плодом). См. также КРОВЬ.

Еще одним наследственным заболеванием является муковисцидоз, причина которого – генетически обусловленное нарушение обмена веществ, сказывающееся прежде всего на функции всех экзокринных желез (слизистых, потовых, слюнных, поджелудочной железы и других): они начинают вырабатывать чрезвычайно вязкую слизь, которая может закупоривать как протоки самих желез, препятствуя выделению ими секрета, так и мелкие бронхи; последнее приводит к тяжелому поражению бронхолегочной системы с развитием в конечном итоге дыхательной недостаточности. У части больных нарушается преимущественно деятельность пищеварительной системы. Болезнь обнаруживается вскоре после рождения и иногда вызывает кишечную непроходимость у новорожденного в первый же день жизни. Некоторые проявления этого заболевания поддаются лекарственной терапии. Наследственным заболеванием является и галактоземия, обусловленная отсутствием фермента, необходимого для метаболизма галактозы (продукта переваривания молочного сахара) и приводящая к образованию катаракты и повреждениям мозга и печени. До недавнего времени галактоземия была частой причиной детской смертности, но сейчас разработаны методы ранней диагностики и лечения посредством специальной диеты. Синдром Дауна (см. ДАУНА СИНДРОМ), как правило, обусловлен наличием в клетках лишней хромосомы. Человек с этим заболеванием обычно низкого роста, со слегка раскосыми глазами и сниженными умственными способностями. Вероятность синдрома Дауна у ребенка растет с увеличением возраста матери. Фенилкетонурия – заболевание, вызываемое отсутствием фермента, необходимого для метаболизма определенной аминокислоты. Оно тоже может быть причиной умственной отсталости (см. ФЕНИЛКЕТОНУРИЯ).

Некоторые врожденные пороки удается частично или полностью исправить хирургическим путем. В их число входят родимые пятна, косолапость, пороки сердца, лишние или сросшиеся пальцы на руках и ногах, аномалии в строении наружных половых органов и мочеполовой системы, расщепление позвоночника, «заячья» губа и «волчья пасть». К порокам относятся также пилорический стеноз, т. е. сужение перехода от желудка к тонкому кишечнику, отсутствие заднепроходного отверстия и гидроцефалия – состояние, при котором в черепе накапливается избыток жидкости, приводящий к увеличению размеров и деформации головы и умственной отсталости (см. также ВРОЖДЕННЫЕ ПОРОКИ).

Лекарственные средства и наркотики. Накоплены данные – многие в результате трагического опыта, – что некоторые лекарственные средства могут быть причиной отклонений в развитии плода. Наиболее известное из них – успокаивающее средство талидомид, которое вызывало недоразвитие конечностей у многих детей, чьи матери принимали это лекарство во время беременности. В настоящее время большинство врачей признает, что лекарственное лечение беременных должно быть сведено к минимуму, особенно в первые три месяца, когда происходит формирование органов. Использование беременной женщиной каких-либо лекарств в виде таблеток и капсул, а также гормонов и даже аэрозолей для ингаляций допустимо только под строгим контролем гинеколога.

Потребление больших количеств алкоголя беременной женщиной увеличивает риск развития у ребенка многих отклонений, называемых в совокупности алкогольным синдромом плода и включающих задержку роста, умственную отсталость, аномалии сердечно-сосудистой системы, маленькую голову (микроцефалия), слабый мышечный тонус.

Наблюдения показали, что употребление кокаина беременными приводит к серьезным нарушениям у плода. Потенциально опасны и другие наркотики типа марихуаны, гашиша и мескалина. Была обнаружена связь между употреблением беременными женщинами галлюциногенного средства ЛСД и частотой спонтанных выкидышей. Согласно экспериментальным данным, ЛСД способен вызывать нарушения структуры хромосом, что указывает на возможность генетических повреждений у еще не родившегося ребенка (см. ЛСД).

Неблагоприятное действие на плод оказывает и курение будущих матерей. Исследования показали, что пропорционально числу выкуриваемых сигарет учащаются случаи преждевременных родов и недоразвития плода. Возможно, курение повышает и частоту выкидышей, рождения мертвых детей, а также детскую смертность непосредственно после родов.

Радиация. Врачи и ученые все чаще указывают на опасность, связанную с непрерывным ростом числа источников радиации, которая способна вызывать повреждения генетического аппарата клеток. На ранних стадиях беременности женщины не должны без необходимости подвергаться воздействию рентгеновского излучения и других форм радиации. В более широком смысле строгий контроль медицинских, промышленных и военных источников радиации жизненно необходим для сохранения генетического здоровья будущих поколений. См. также РАЗМНОЖЕНИЕ; РЕПРОДУКЦИЯ ЧЕЛОВЕКА; ЭМБРИОЛОГИ

Http://www.krugosvet.ru/enc/medicina/EMBRIOLOGIYA_CHELOVEKA.html