Домой / Дача / Урок "Арктангенс и арккотангенс. Решение уравнений tgx = а, ctgx = a". Арксинус, арккосинус - свойства, графики, формулы График функции арксинус

Урок "Арктангенс и арккотангенс. Решение уравнений tgx = а, ctgx = a". Арксинус, арккосинус - свойства, графики, формулы График функции арксинус

Функции sin, cos, tg и ctg всегда сопровождаются арксинусом, арккосинусом, арктангенсом и арккотангенсом. Одно является следствием другого, а пары функций одинаково важны для работы с тригонометрическими выражениями.

Рассмотрим рисунок единичной окружности, на котором графически отображено значений тригонометрических функций.

Если вычислить arcs OA, arcos OC, arctg DE и arcctg MK, то все они будут равны значению угла α. Формулы, приведенные ниже, отражают взаимосвязь основных тригонометрических функций и соответствующих им арков.

Чтобы больше понять о свойствах арксинуса, необходимо рассмотреть его функцию. График имеет вид асимметричной кривой, проходящей через центр координат.

Свойства арксинуса:

Если сопоставить графики sin и arcsin , у двух тригонометрических функций можно найти общие закономерности.

Арккосинус

Arccos числа а — это значение угла α, косинус которого равен а.

Кривая y = arcos x зеркально отображает график arcsin x, с той лишь разницей, что проходит через точку π/2 на оси OY.

Рассмотрим функцию арккосинуса более подробно:

  1. Функция определена на отрезке [-1; 1].
  2. ОДЗ для arccos — .
  3. График целиком расположен в I и II четвертях, а сама функция не является ни четной, ни нечетной.
  4. Y = 0 при x = 1.
  5. Кривая убывает на всей своей протяженности. Некоторые свойства арккосинуса совпадают с функцией косинуса.

Некоторые свойства арккосинуса совпадают с функцией косинуса.

Возможно, школьникам покажется излишним такое «подробное» изучение «арков». Однако, в противном случае, некоторые элементарные типовые задания ЕГЭ могут ввести учащихся в тупик.

Задание 1. Укажите функции изображенные на рисунке.

Ответ: рис. 1 – 4, рис.2 — 1.

В данном примере упор сделан на мелочах. Обычно ученики очень невнимательно относятся к построению графиков и внешнему виду функций. Действительно, зачем запоминать вид кривой, если ее всегда можно построить по расчетным точкам. Не стоит забывать, что в условиях теста время, затраченное на рисунок для простого задания, потребуется для решения более сложных заданий.

Арктангенс

Arctg числа a – это такое значение угла α, что его тангенс равен а.

Если рассмотреть график арктангенса, можно выделить следующие свойства:

  1. График бесконечен и определен на промежутке (- ∞; + ∞).
  2. Арктангенс нечетная функция, следовательно, arctg (- x) = — arctg x.
  3. Y = 0 при x = 0.
  4. Кривая возрастает на всей области определения.

Приведем краткий сравнительный анализ tg x и arctg x в виде таблицы.

Арккотангенс

Arcctg числа a — принимает такое значение α из интервала (0; π), что его котангенс равен а.

Свойства функции арккотангенса:

  1. Интервал определения функции – бесконечность.
  2. Область допустимых значений – промежуток (0; π).
  3. F(x) не является ни четной, ни нечетной.
  4. На всем своем протяжении график функции убывает.

Сопоставить ctg x и arctg x очень просто, нужно лишь сделать два рисунка и описать поведение кривых.

Задание 2. Соотнести график и форму записи функции.

Если рассуждать логически, из графиков видно, что обе функции возрастающие. Следовательно, оба рисунка отображают некую функцию arctg. Из свойств арктангенса известно, что y=0 при x = 0,

Ответ: рис. 1 – 1, рис. 2 – 4.

Тригонометрические тождества arcsin, arcos, arctg и arcctg

Ранее нами уже была выявлена взаимосвязь между арками и основными функциями тригонометрии. Данная зависимость может быть выражена рядом формул, позволяющих выразить, например, синус аргумента, через его арксинус, арккосинус или наоборот. Знание подобных тождеств бывает полезным при решении конкретных примеров.

Также существуют соотношения для arctg и arcctg:

Еще одна полезная пара формул, устанавливает значение для суммы значений arcsin и arcos, а также arcctg и arcctg одного и того же угла.

Примеры решения задач

Задания по тригонометрии можно условно разделить на четыре группы: вычислить числовое значение конкретного выражения, построить график данной функции, найти ее область определения или ОДЗ и выполнить аналитические преображения для решения примера.

При решении первого типа задач необходимо придерживаться следующего плана действий:

При работе с графиками функций главное – это знание их свойств и внешнего вида кривой. Для решения тригонометрических уравнений и неравенств необходимы таблицы тождеств. Чем больше формул помнит школьник, тем проще найти ответ задания.

Допустим в ЕГЭ необходимо найти ответ для уравнения типа:

Если правильно преобразовать выражение и привести к нужному виду, то решить его очень просто и быстро. Для начала, перенесем arcsin x в правую часть равенства.

Если вспомнить формулу arcsin (sin α) = α , то можно свести поиск ответов к решению системы из двух уравнений:

Ограничение на модель x возникло, опять таки из свойств arcsin: ОДЗ для x [-1; 1]. При а ≠0, часть сиcтемы представляет собой квадратное уравнение с корнями x1 = 1 и x2 = — 1/a. При a = 0, x будет равен 1.


Эта статья про нахождение значений арксинуса, арккосинуса, арктангенса и арккотангенса данного числа. Сначала мы внесем ясность, что называется значением арксинуса, арккосинуса, арктангенса и арккотангенса. Дальше получим основные значения этих аркфункций, после чего разберемся, как находятся значения арксинуса, арккосинуса, арктангенса и арккотангенса по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса. Наконец, поговорим про нахождение арксинуса числа, когда известен арккосинус, арктангенс или арккотангенс этого числа, и т.п.

Навигация по странице.

Значения арксинуса, арккосинуса, арктангенса и арккотангенса

Сначала стоит разобраться, что вообще такое «значение арксинуса, арккосинуса, арктангенса и арккотангенса ».

Таблицы синусов и косинусов, а также тангенсов и котангенсов Брадиса позволяют найти значение арксинуса, арккосинуса, арктангенса и арккотангенса положительного числа в градусах с точностью до одной минуты. Здесь стоит оговориться, что нахождение значений арксинуса, арккосинуса, арктангенса и арккотангенса отрицательных чисел можно свести к нахождению значений соответствующих аркфункций положительных чисел, обратившись к формулам arcsin, arccos, arctg и arcctg противоположных чисел вида arcsin(−a)=−arcsin a , arccos(−a)=π−arccos a , arctg(−a)=−arctg a и arcctg(−a)=π−arcctg a .

Разберемся с нахождением значений арксинуса, арккосинуса, арктангенса и арккотангенса по таблицам Брадиса. Будем это делать на примерах.

Пусть нам требуется найти значение арксинуса 0,2857 . Находим это значение в таблице синусов (случаи, когда это значение отсутствует в таблице, разберем ниже). Ему соответствует синус 16 градусов 36 минут. Следовательно, искомым значением арксинуса числа 0,2857 является угол 16 градусов 36 минут.

Часто приходится учитывать и поправки из трех справа столбцов таблицы. К примеру, если нам нужно найти арксинус 0,2863 . По таблице синусов это значение получается как 0,2857 плюс поправка 0,0006 , то есть, значению 0,2863 соответствует синус 16 градусов 38 минут (16 градусов 36 минут плюс 2 минуты поправки).

Если же число, арксинус которого нас интересует, отсутствует в таблице и даже не может быть получено с учетом поправок, то в таблице нужно отыскать два наиболее близких к нему значения синусов, между которыми данное число заключено. Например, мы ищем значение арксинуса числа 0,2861573 . Этого числа нет в таблице, с помощью поправок это число тоже не получить. Тогда находим два наиболее близких значения 0,2860 и 0,2863 , между которыми исходное число заключено, этим числам соответствуют синусы 16 градусов 37 минут и 16 градусов 38 минут. Искомое значение арксинуса 0,2861573 заключено между ними, то есть, любое из этих значений угла можно принять в качестве приближенного значения арксинуса с точностью до 1 минуты.

Абсолютно аналогично находятся и значения арккосинуса, и значения арктангенса и значения арккотангенса (при этом, конечно, используются таблицы косинусов, тангенсов и котангенсов соответственно).

Нахождение значения arcsin через arccos, arctg, arcctg и т.п.

Например, пусть нам известно, что arcsin a=−π/12 , а нужно найти значение arccos a . Вычисляем нужное нам значение арккосинуса: arccos a=π/2−arcsin a=π/2−(−π/12)=7π/12 .

Куда интереснее обстоит дело, когда по известному значению арксинуса или арккосинуса числа a требуется найти значение арктангенса или арккотангенса этого числа a или наоборот. Формул, задающих такие связи, мы, к сожалению, не знаем. Как же быть? Разберемся с этим на примере.

Пусть нам известно, что арккосинус числа a равен π/10 , и нужно вычислить значение арктангенса этого числа a . Решить поставленную задачу можно так: по известному значению арккосинуса найти число a , после чего найти арктангенс этого числа. Для этого нам сначала потребуется таблица косинусов, а затем – таблица тангенсов.

Угол π/10 радиан – это угол 18 градусов, по таблице косинусов находим, что косинус 18 градусов приближенно равен 0,9511 , тогда число a в нашем примере есть 0,9511 .

Осталось обратиться к таблице тангенсов, и с ее помощью найти нужное нам значение арктангенса 0,9511 , оно приближенно равно 43 градусам 34 минутам.

Эту тему логически продолжает материал статьи вычисление значений выражений, содержащих arcsin, arccos, arctg и arcctg .

Список литературы.

  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • И. В. Бойков, Л. Д. Романова. Сборникк задач для подготовки к ЕГЭ, часть 1, Пенза 2003.
  • Брадис В. М. Четырехзначные математические таблицы: Для общеобразоват. учеб. заведений. - 2-е изд. - М.: Дрофа, 1999.- 96 с.: ил. ISBN 5-7107-2667-2

Ранее по программе учащиеся получили представление о решении тригонометрических уравнений, ознакомились с понятиями арккосинуса и арксинуса, примерами решений уравнений cos t = a и sin t = a. В этом видеоуроке рассмотрим решение уравнений tg x = a и ctg x = a.

В начале изучения данной темы рассмотрим уравнения tg x = 3 и tg x = - 3. Если уравнение tg x = 3 будем решать с помощью графика, то увидим, что пересечение графиков функций y = tg x и y = 3 имеет бесконечное множество решений, где x = x 1 + πk. Значение x 1 - это координата x точки пересечения графиков функций y = tg x и y = 3. Автор вводит понятие арктангенса: arctg 3 это число, tg которого равен 3, и это число принадлежит интервалу от -π/2 до π/2. Используя понятие арктангенса, решение уравнения tg x = 3 можно записать в виде x = arctg 3 + πk.

По аналогии решается уравнение tg x = - 3. По построенным графикам функций y = tg x и y = - 3 видно, что точки пересечения графиков, а следовательно, и решениями уравнений, будет x = x 2 + πk. С помощью арктангенса решение можно записать как x = arctg (- 3) + πk. На следующем рисунке увидим, что arctg (- 3) = - arctg 3.

Общее определение арктангенса выглядит следующим образом: арктангенсом а называется такое число из промежутка от -π/2 до π/2, тангенс которого равен а. Тогда решением уравнения tg x = a является x = arctg a + πk.

Автор приводит пример 1. Найти решение выражения arctg.Введем обозначения: арктангенс числа равен x, тогда tg x будет равен данному числу, где x принадлежит отрезку от -π/2 до π/2. Как в примерах в предыдущих темах, воспользуемся таблицей значений. По этой таблице тангенсу данного числа соответствует значение x = π/3. Запишем решение уравнения арктангенс заданного числа равен π/3, π/3 принадлежит и интервалу от -π/2 до π/2.

Пример 2 - вычислить арктангенс отрицательного числа. Используя равенство arctg (- a) = - arctg a, введем значение x. Аналогично примеру 2 запишем значение x, которое принадлежит отрезку от -π/2 до π/2. По таблице значений найдем, что x = π/3, следовательно, -- tg x = - π/3. Ответом уравнения будет - π/3.

Рассмотрим пример 3. Решим уравнение tg x = 1. Запишем, что x = arctg 1 + πk. В таблице значению tg 1 соответствует значение x = π/4, следовательно, arctg 1 = π/4. Подставим это значение в исходную формулу x и запишем ответ x = π/4 + πk.

Пример 4: вычислить tg x = - 4,1. В данном случае x = arctg (- 4,1) + πk. Т.к. найти значение arctg в данном случае нет возможности, ответ будет выглядеть как x = arctg (- 4,1) + πk.

В примере 5 рассматривается решение неравенства tg x > 1. Для решения построим графики функций y = tg x и y = 1. Как видно на рисунке, эти графики пересекаются в точках x = π/4 + πk. Т.к. в данном случае tg x > 1, на графике выделим область тангенсоиды, которая находится выше графика y = 1, где x принадлежит интервалу от π/4 до π/2. Ответ запишем как π/4 + πk < x < π/2 + πk.

Далее рассмотрим уравнение ctg x = a. На рисунке изображены графики функций у = ctg x, y = a, y = - a, которые имеют множество точек пересечения. Решения можно записать как x = x 1 + πk, где x 1 = arcctg a и x = x 2 + πk, где x 2 = arcctg (- a). Отмечено, что x 2 = π - x 1 . Из этого следует равенство arcctg (- a) = π - arcctg a. Далее дается определение арккотангенса: арккотангенсом а называется такое число из промежутка от 0 до π, котангенс которого равен а. Решение уравнения сtg x = a записывается в виде: x = arcctg a + πk.

В конце видеоурока делается еще один важный вывод - выражение ctg x = a можно записать в виде tg x = 1/a, при условии, что a не равно нулю.

ТЕКСТОВАЯ РАСШИФРОВКА:

Рассмотрим решение уравнений tg х = 3 и tg х= - 3. Решая первое уравнение графически, мы видим, что графики функций у = tg х и у = 3 имеют бесконечно много точек пересечения, абсциссы которых запишем в виде

х = х 1 + πk, где х 1 - это абсцисса точки пересечения прямой у = 3 с главной ветвью тангенсоиды (рис.1), для которой было придумано обозначение

arctg 3 (арктангенс трех).

Как же понимать arctg 3?

Это число, тангенс которого равен 3 и это число принадлежит интервалу (- ;). Тогда все корни уравнения tg х = 3 можно записать формулой х = arctg 3+πk.

Аналогично решение уравнения tg х = - 3 можно записать в виде х = х 2 + πk, где х 2 - это абсцисса точки пересечения прямой у = - 3 с главной ветвью тангенсоиды (рис.1), для которой было придумано обозначение arctg(-3) (арктангенс минус трех). Тогда все корни уравнения можно записать формулой: х = arctg(-3)+ πk. По рисунку видно, что arctg(- 3)= - arctg 3.

Сформулируем определение арктангенса. Арктангенсом а называется такое число из промежутка (-;), тангенс которого равен а.

Часто используют равенство: arctg(-а) = -arctg а, которое справедливо для любого а.

Зная определение арктангенса, сделаем общий вывод о решении уравнения

tg х= a: уравнение tg х = a имеет решение х = arctg а + πk.

Рассмотрим примеры.

ПРИМЕР 1.Вычислить arctg.

Решение. Пусть arctg = х, тогда tgх = и хϵ (- ;). Показать таблицу значений Следовательно, х =, так как tg = и ϵ (- ;).

Итак, arctg =.

ПРИМЕР 2. Вычислить arctg (-).

Решение. Используя равенство arctg(- а) = - arctg а, запишем:

arctg(-) = - arctg . Пусть - arctg = х, тогда - tgх = и хϵ (- ;). Следовательно, х =, так как tg = и ϵ (- ;). Показать таблицу значений

Значит - arctg=- tgх= - .

ПРИМЕР 3. Решить уравнение tgх = 1.

1. Запишем формулу решений: х = arctg 1 + πk.

2. Найдем значение арктангенса

так как tg = . Показать таблицу значений

Значит arctg1= .

3. Поставим найденное значение в формулу решений:

ПРИМЕР 4. Решить уравнение tgх = - 4,1(тангенс икс равно минус четыре целые одна десятая).

Решение. Запишем формулу решений: х = arctg (- 4,1) + πk.

Вычислить значение арктангенса мы не можем, поэтому решение уравнения оставим в полученном виде.

ПРИМЕР 5. Решить неравенство tgх 1.

Решение. Будем решать графически.

  1. Построим тангенсоиду

у= tgх и прямую у = 1(рис.2). Они пересекаются в точках вида х = + πk.

2. Выделим промежуток оси икс, на котором главная ветвь тангенсоиды расположена выше прямой у = 1, так как по условию tgх 1. Это интервал (;).

3. Используем периодичность функции.

Своийство 2. у=tg х - периодическая функция с основным периодом π.

Учитывая периодичность функции у= tgх, запишем ответ:

(;). Ответ можно записать в виде двойного неравенства:

Перейдем к уравнению ctg х = a. Представим графическую иллюстрацию решения уравнения для положительного и отрицательного а (рис.3).

Графики функций у= ctg х и у =а а также

у= ctg х и у=-а

имеют бесконечно много общих точек, абсциссы которых имеют вид:

х = х 1 + , где х 1 - это абсцисса точки пересечения прямой у =а с главной ветвью тангенсоиды и

х 1 = arcсtg а;

х = х 2 + , где х 2 - это абсцисса точки пересечения прямой

у = - а с главной ветвью тангенсоиды и х 2 = arcсtg (- а).

Заметим, что х 2 = π - х 1 . Значит, запишем важное равенство:

arcсtg (-а) = π - arcсtg а.

Сформулируем определение: арккотангенсом а называется такое число из интервала (0;π), котангенс которого равен а.

Решение уравнения ctg х = a записываются в виде: х = arcсtg а + .

Обратим внимание, что уравнение ctg х = a можно преобразовать к виду

tg х = , за исключение, когда а = 0.

Арктангенс (y = arctg x ) - это функция, обратная к тангенсу (x = tg y
tg(arctg x) = x
arctg(tg x) = x

Арктангенс обозначается так:
.

График функции арктангенс

График функции y = arctg x

График арктангенса получается из графика тангенса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, множество значений ограничивают интервалом , на котором функция монотонна. Такое определение называют главным значением арктангенса.

Арккотангенс, arcctg

Арккотангенс (y = arcctg x ) - это функция, обратная к котангенсу (x = ctg y ). Он имеет область определения и множество значений .
ctg(arcctg x) = x
arcctg(ctg x) = x

Арккотангенс обозначается так:
.

График функции арккотангенс


График функции y = arcctg x

График арккотангенса получается из графика котангенса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом , на котором функция монотонна. Такое определение называют главным значением арккотангенса.

Четность

Функция арктангенс является нечетной:
arctg(- x) = arctg(-tg arctg x) = arctg(tg(-arctg x)) = - arctg x

Функция арккотангенс не является четной или нечетной:
arcctg(- x) = arcctg(-ctg arcctg x) = arcctg(ctg(π-arcctg x)) = π - arcctg x ≠ ± arcctg x .

Свойства - экстремумы, возрастание, убывание

Функции арктангенс и арккотангенс непрерывны на своей области определения, то есть для всех x . (см. доказательство непрерывности). Основные свойства арктангенса и арккотангенса представлены в таблице.

y = arctg x y = arcctg x
Область определения и непрерывность - ∞ < x < + ∞ - ∞ < x < + ∞
Множество значений
Возрастание, убывание монотонно возрастает монотонно убывает
Максимумы, минимумы нет нет
Нули, y = 0 x = 0 нет
Точки пересечения с осью ординат, x = 0 y = 0 y = π/2
- π
0

Таблица арктангенсов и арккотангенсов

В данной таблице представлены значения арктангенсов и арккотангенсов, в градусах и радианах, при некоторых значениях аргумента.

x arctg x arcctg x
град. рад. град. рад.
- ∞ - 90° - 180° π
- - 60° - 150°
- 1 - 45° - 135°
- - 30° - 120°
0 0 90°
30° 60°
1 45° 45°
60° 30°
+ ∞ 90° 0

≈ 0,5773502691896258
≈ 1,7320508075688772

Формулы

Формулы суммы и разности


при

при

при


при

при

при

Выражения через логарифм, комплексные числа

,
.

Выражения через гиперболические функции

Производные


См. Вывод производных арктангенса и арккотангенса > > >

Производные высших порядков :
Пусть . Тогда производную n-го порядка арктангенса можно представить одним из следующих способов:
;
.
Символ означает мнимую часть стоящего следом выражения.

См. Вывод производных высших порядков арктангенса и арккотангенса > > >
Там же даны формулы производных первых пяти порядков.

Аналогично для арккотангенса. Пусть . Тогда
;
.

Интегралы

Делаем подстановку x = tg t и интегрируем по частям:
;
;
;

Выразим арккотангенс через арктангенс:
.

Разложение в степенной ряд

При |x| ≤ 1 имеет место следующее разложение:
;
.

Обратные функции

Обратными к арктангенсу и арккотангенсу являются тангенс и котангенс , соответственно.

Следующие формулы справедливы на всей области определения:
tg(arctg x) = x
ctg(arcctg x) = x .

Следующие формулы справедливы только на множестве значений арктангенса и арккотангенса:
arctg(tg x) = x при
arcctg(ctg x) = x при .

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Урок и презентация на темы: "Арксинус. Таблица арксинусов. Формула y=arcsin(x)"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Программная среда "1С: Математический конструктор 6.1"
Решаем задачи по геометрии. Интерактивные задания на построение в пространстве

Что будем изучать:
1. Что такое арксинус?
2. Обозначение арксинуса.
3. Немного истории.
4. Определение.

6. Примеры.

Что такое арксинус?

Ребята, мы с вами уже научились решать уравнения для косинуса, давайте теперь научимся решать подобные уравнения и для синуса. Рассмотрим sin(x)= √3/2. Для решения этого уравнения требуется построить прямую y= √3/2 и посмотреть: в каких точках она пересекает числовую окружность. Видно, что прямая пересекает окружность в двух точках F и G. Эти точки и будут решением нашего уравнения. Переобозначим F как x1, а G как x2. Решение этого уравнения мы уже находили и получили: x1= π/3 + 2πk,
а x2= 2π/3 + 2πk.

Решить данное уравнение довольно просто, но как решить, например, уравнение
sin(x)= 5/6. Очевидно, что это уравнение будет иметь также два корня, но какие значения будут соответствовать решению на числовой окружности? Давайте внимательно посмотрим на наше уравнение sin(x)= 5/6.
Решением нашего уравнения будут две точки: F= x1 + 2πk и G= x2 + 2πk,
где x1 – длина дуги AF, x2 – длина дуги AG.
Заметим: x2= π - x1, т.к. AF= AC - FC, но FC= AG, AF= AC - AG= π - x1.
Но, что это за точки?

Столкнувшись с подобной ситуацией, математики придумали новый символ – arcsin(x). Читается, как арксинус.

Тогда решение нашего уравнения запишется так: x1= arcsin(5/6), x2= π -arcsin(5/6).

И решение в общем виде: x= arcsin(5/6) + 2πk и x= π - arcsin(5/6) + 2πk.
Арксинус - это угол (длина дуги AF, AG) синус, которого равен 5/6.

Немного истории арксинуса

История происхождения нашего символа совершенно такая же, как и у arccos. Впервые символ arcsin появляется в работах математика Шерфера и известного французского ученого Ж.Л. Лагранжа. Несколько ранее понятие арксинус рассматривал Д. Бернули, правда записывал его другими символами.

Общепринятыми эти символы стали лишь в конце XVIII столетия. Приставка "arc" происходит от латинского "arcus" (лук, дуга). Это вполне согласуется со смыслом понятия: arcsin x - это угол (а можно сказать и дуга), синус которого равен x.

Определение арксинуса

Если |а|≤ 1, то arcsin(a) – это такое число из отрезка [- π/2; π/2], синус которого равен а.



Если |а|≤ 1, то уравнение sin(x)= a имеет решение: x= arcsin(a) + 2πk и
x= π - arcsin(a) + 2πk


Перепишем:

x= π - arcsin(a) + 2πk = -arcsin(a) + π(1 + 2k).

Ребята, посмотрите внимательно на два наших решения. Как думаете: можно ли их записать общей формулой? Заметим, что если перед арксинусом стоит знак "плюс", то π умножается на четное число 2πk, а если знак "минус", то множитель - нечетный 2k+1.
С учётом этого, запишем общую формула решения для уравнения sin(x)=a:

Есть три случая, в которых предпочитают записывать решения более простым способом:

sin(x)=0, то x= πk,

sin(x)=1, то x= π/2 + 2πk,

sin(x)=-1, то x= -π/2 + 2πk.

Для любого -1 ≤ а ≤ 1 выполняется равенство: arcsin(-a)=-arcsin(a).




Напишем таблицу значений косинуса наоборот и получим таблицу для арксинуса.

Примеры

1. Вычислить: arcsin(√3/2).
Решение: Пусть arcsin(√3/2)= x, тогда sin(x)= √3/2. По определению: - π/2 ≤x≤ π/2. Посмотрим значения синуса в таблице: x= π/3, т.к. sin(π/3)= √3/2 и –π/2 ≤ π/3 ≤ π/2.
Ответ: arcsin(√3/2)= π/3.

2. Вычислить: arcsin(-1/2).
Решение: Пусть arcsin(-1/2)= x, тогда sin(x)= -1/2. По определению: - π/2 ≤x≤ π/2. Посмотрим значения синуса в таблице: x= -π/6, т.к. sin(-π/6)= -1/2 и -π/2 ≤-π/6≤ π/2.
Ответ: arcsin(-1/2)=-π/6.

3. Вычислить: arcsin(0).
Решение: Пусть arcsin(0)= x, тогда sin(x)= 0. По определению: - π/2 ≤x≤ π/2. Посмотрим значения синуса в таблице: значит x= 0, т.к. sin(0)= 0 и - π/2 ≤ 0 ≤ π/2. Ответ: arcsin(0)=0.

4. Решить уравнение: sin(x) = -√2/2.
x= arcsin(-√2/2) + 2πk и x= π - arcsin(-√2/2) + 2πk.
Посмотрим в таблице значение: arcsin (-√2/2)= -π/4.
Ответ: x= -π/4 + 2πk и x= 5π/4 + 2πk.

5. Решить уравнение: sin(x) = 0.
Решение: Воспользуемся определением, тогда решение запишется в виде:
x= arcsin(0) + 2πk и x= π - arcsin(0) + 2πk. Посмотрим в таблице значение: arcsin(0)= 0.
Ответ: x= 2πk и x= π + 2πk

6. Решить уравнение: sin(x) = 3/5.
Решение: Воспользуемся определением, тогда решение запишется в виде:
x= arcsin(3/5) + 2πk и x= π - arcsin(3/5) + 2πk.
Ответ: x= (-1) n - arcsin(3/5) + πk.

7. Решить неравенство sin(x) Решение: Синус - это ордината точки числовой окружности. Значит: нам надо найти такие точки, ордината которых меньше 0.7. Нарисуем прямую y=0.7. Она пересекает числовую окружность в двух точках. Неравенству y Тогда решением неравенства будет: -π – arcsin(0.7) + 2πk

Задачи на арксинус для самостоятельного решения

1) Вычислить: а) arcsin(√2/2), б) arcsin(1/2), в) arcsin(1), г) arcsin(-0.8).
2) Решить уравнение: а) sin(x) = 1/2, б) sin(x) = 1, в) sin(x) = √3/2, г) sin(x) = 0.25,
д) sin(x) = -1.2.
3) Решить неравенство: а) sin (x)> 0.6, б) sin (x)≤ 1/2.